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Systems of interacting neurons

• N spiking neurons described by their membrane potential values
XN,1
t , . . . ,XN,N

t ≥ 0, t ≥ 0.
• Each neuron i ‘spikes’ (sends action potentials) at rate f (XN,i

t ).
• f Lipschitz, increasing, f (0) = 0, bounded:

f (x) ≤ f∗.

• When neuron i spikes
⇒ the potential of neuron i is reset to a resting value chosen to be
0
⇒ all other neurons j 6= i get an additional potential value h/N
which is added to their current value. We call h > 0 the synaptic
weight.
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• Between successive spikes, there is loss of potential at rate α > 0,
that is,

dXN,i
t = −αXN,i

t dt

in between successive jumps of the system.

Remark
Model considered by Cessac 2011, Galves and L. 2013, De Masi,
Galves, L. and Presutti 2015, Fournier and L. 2016, Robert and
Touboul 2016, Cormier, Tanré and Veltz 2019, and certainly others:
Leaky integrate and fire model.



Generator

The above process is a very simple PDMP and has generator

Lϕ(x) =
N∑
i=1

f (x i )[ϕ(x + ∆i (x)))− ϕ(x)]− α
N∑
i=1

∂ϕ

∂x i
(x)x i ,

(∆i (x))j =

{
h
N j 6= i
−x i j = i

}
.

Big jumps (unbounded) and collateral jumps of order 1/N !

Remark
Process can also be seen as a system of N interacting non-linear
Hawkes processes with kernel function hij(t) = (h/N)e −αt , i 6= j ,
and variable length memory (reset to 0).



Longtime behavior of the finite system

• Since f (0) = 0, the all-zero state is an invariant state of the
system.

• It is straightforward to show (Duarte and Ost (MPRF 2016)):

Theorem
If f is differentiable in 0, then the system stops spiking almost
surely. As a consequence, the unique invariant measure of the
process (XN

t ) is given by δ0, where 0 ∈ RN denotes the all-zero
vector in RN .

• Situation changes as the number of neurons tends to infinity : As
N →∞, 0 becomes unstable for some values of the parameters.
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Proof.
− If neuron i has initially potential value xi , then the probability
that its first spike occurs after time t (cond. on the fact that no
other spikes have happened in the mean while) is

P(T i
1 > t) = exp

(
−
∫ t

0
f (e −αsxi )ds

)
.

− Use change of variables y = e −αsxi , dy = −αyds :

P(T i
1 > t) = exp

(
− 1
α

∫ xi

e−αtxi

f (y)

y
dy

)
.

− Let t →∞ :

P(T i
1 =∞) = exp

(
− 1
α

∫ xi

0

f (y)

y
dy

)
> 0,

since
∫
0
f (y)
y dy <∞ : f ′(0) <∞.
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Proof.
− At each time t such that all potential values of all neurons
are simultaneously below some threshold K , there is a strictly
positive probability

≥ exp

(
−N

α

∫ K

0

f (y)

y
dy

)
that none of the neurons does ever spike again.
− Use Lyapunov techniques to show that this event (all values
below K ) happens i.o. almost surely plus conditional
Borel-Cantelli lemma.



I Finite system possesses a last spiking time L = LN <∞
almost surely, for any N, after which it is silent.

I Isolated system: we can interpret LN as the time an initial
stimulus survives in the system.

I The situation changes however as N →∞, as we can see on
simulations (done by C. Pouzat for a slightly different model
including synaptic plasticity)

I We will show that this is related to “Metastability”.



Where are we ?
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I Metastability = transient behavior of the system during
which the systems stays close over a very long time to a
seemingly stable point = the metastable state.

I Lebowitz and Penrose, Rigorous treatment of metastable
states in the van der Waals-Maxwell theory, JSP 1971:
I A system starting in a metastable state is very likely to stay

there for a long time.
I Once it has left the vicinity of the metastable state, it is very

unlikely to return there.
I This happens after an unpredictable time - which is random,

and the “unpredictability” is expressed through the fact that it
must be exponentially distributed.



I Initially described in the context of small noise diffusions
evolving in an energy landscape

I It is the appearance of a statistically rare event that pushes the
system out of the metastable state.



I In our case, “Metastability” means that the renormalized last
spiking time is asymptotically exponentially distributed, that is
LN/E(LN) ∼ exp(1) as N →∞.

I Intuitively, this will happen if during a long time, the system
does not feel that its actual size is finite (N), but behaves as if
it were already in its infinite population limit - and therein,
close to its invariant state.



Limit system
I Form of the limit? Let us have a look on its generator:

ANϕ(u) =
N∑
i=1

f (ui )[ϕ(u + ∆i (u)))− ϕ(u)]− α
N∑
i=1

∂ϕ

∂ui
(u)ui ,

(∆i (u))j =

{
h
N j 6= i
−ui j = i

}
.

I If there would be no reset −ui (no big jumps), Taylor’s
formula would imply

ϕ(u + ∆i (u)))− ϕ(u) =
N∑
j=1

∂ϕ

∂uj
(u) · h

N
+ o(

1
N

) :

jumps become a deterministic drift term that pushes each
neuron’s potential upwards by hf̄ (u) where f̄ is the total
spiking rate of the system.



I Under suitable assumptions on the initial potential values, the
limit system for neurons without reset (classical Hawkes) is
given by a simple ODE for the membrane potential of one
typical neuron within the infinite pop limit model

x(t) = x(0)− α
∫ t

0
x(s)ds +

∫ t

0
hf (x(s))ds

(every neuron is described by this equation, and neurons are all
independent in the limit (propagation of chaos)).

I Any stationary state x∗ must satisfy

αx∗ = hf (x∗).

I x∗ = 0 always solution since f (0) = 0.



− for concave f and sufficiently large synaptic weights h, this
implies the existence of at least a second non-trivial equilibrium
x∗ > 0 that is attracting.

− these arguments do not apply directly to the true process with
reset inducing big jumps and discontinuities.



The true limit process for the model with reset

I In the true model, the membrane potential process of a typical
neuron in the limit remains a stochastic process which is
described by

dX̄ (t) = −αX̄ (t)dt + hE(f (X̄ (t)))dt−X̄ (t−)dZ̄ (t),

where Z̄ is a jump process having stochastic intensity
f (X̄ (t−)).

I Each neuron’s potential undergoes leakage at exponential rate
- and has an upward drift given by the current mean firing rate
of the system (multiplied by h).

I Moreover, it spikes randomly, at rate f (x), whenever its
current value of potential is x , and goes back to the reset
value 0 after each spike.



Remark
We have convergence to the limit system (propagation of chaos)
plus a rate of convergence, e.g. for the synchronous coupling,

E|X̄ (t)− XN
1 (t)| ≤ C (

√
t + t)e(α+hk+‖f ‖∞)tN−1/2,

see Fournier and L. (2016), Robert and Touboul (2016),
Monmarché and L. (2021).



Invariant states of the true limit

I In any invariant state, the drift term t 7→ hE(f (X̄ (t))) must
be constant, say ≡ b.

I This defines - for any fixed b - a classical renewal Markov
process (process coming back to 0 i.o. and thus being recurrent) with generator

Abϕ(x) = −αxϕ′(x) + bϕ′(x) + f (x)[ϕ(0)− ϕ(x)]

and unique invariant probability measure πb.
I The true non-linear invariant measure is then solution of the

fixed-point equation
hπb(f ) = b.

I b = 0, πb = δ0 is always solution - is there another one ?



Phase transition

− Suppose that f (x) ≥ kx for all x ∈ [0, u∗].
− What is the meaning of k ? k = f ′(0).
− h the synaptic weight and α the exponential rate of decay : If

α < kh,

then in the N →∞− limit, there is a second non-trivial (different
from the all-zero-state) equilibrium. Robert-Touboul (2016),
Cormier, Tanré, Veltz (2020+), Lö-Monmarché (2021).
− Second equilibrium is an absolutely continuous measure having
an explicit density depending on the unknown mean spiking rate.



Shape of invariant measure

Second equilibrium is an absolutely continuous measure having
density

g(x) =
p∞

V∞(x)
e
−

∫ x
0

f (y)
V∞(y)

dy
, x < hp∞/α,

V∞(x) = −αx + hp∞, p∞ =
∫∞
0 f (x)g(x)dx invariant mean

spiking rate (UNKNOWN!).



In the sequel, we work with saturating and piecewise linear spiking
rates :

f (x) = kx for all x ≤ f∗/k , jump rate bounded by f∗.



Then, for sufficiently high values of kh, this second equilibrium is
globally attracting (at exponential speed).
We do not have any closed formula to compute e.g. the equilibrium
spiking rate explicitly: the limit system is not easy to analyze...
However:

I Series of papers by Quentin Cormier, Etienne Tanré and
Romain Veltz, with deep results about local and global
stability of invariant state and existence of periodic solutions -
using functional-analytical tools.

I For our purposes we need more: a loss of memory property
of the limit process which we will prove by using coupling.
This loss of memory will imply ....
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Metastability

For saturating rate functions and sufficiently high values of kh (the
product of the derivative of the rate function in 0 and the synaptic
weight):
− The finite system stays a long time in a vicinity of the limit
equilibrium (e.g. of the limit equilibrium spiking rate).
− It is kicked out of this vicinity after an unpredictably long time τ
such that ∣∣P (τ ≥ tE(τ))− e−t

∣∣ ≤ C lnN/N1/4 → 0

as N →∞ (with P. Monmarché 2021)



Ideas of proof : why exponential distribution?

I Global spiking rate FN(t) =
∑N

i=1 f (XN
i (t)) = Nf̄ (XN(t)).

I D = {f̄ ≥ δ} : mean spiking rate strictly lower-bounded (by
some small constant).

I If the process has not left D after some time T , then FN/N is
probably in a vicinity of the limit equilibrium

I and then it will typically stay in D a time longer than N and
forget its initial position.

I So the trials to reach the all-zero configuration become
independent =⇒ exponential distribution.
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Forgetting the initial position/Coupling in the limit system

I Take two copies of the limit process (one single, typical
neuron), with different initial values, and driven by the same
Poisson random measure. This leads to a coupling of the
jumps and makes the two processes jump together as often as
possible.

I Once both processes have reached potential value f∗/k, the
associated rates are equal and thus the two processes have the
same jumps. Once they jump, they are both reset to 0 and
hence equal at that time.

I Difference in the drift is the reason why they separate again -
but drift is only felt before reaching threshold f∗/k .

I How long does it take to reach value f∗/k?

I Drift felt by each neuron: −αx + hf̄ , where f̄ is the mean
spiking rate of the system. Need to lower-bound this drift by
something strictly positive that we are able to control explicitly.
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An auxiliary Markov process for the finite system

− We wish to estimate the time we need for a given neuron to
reach the threshold f∗/k without spiking.
− We introduce an auxiliary simple Markov process ZN such that

f̄ (XN) =
1
N

N∑
i=1

f (XN
i (t)) ≥ ZN

and large deviation estimates for ZN are easily obtained (associated
limit process zt is deterministic).
− We know the time the limit process associated to ZN needs to
reach f∗/k .
− Construction of ZN does only depend on behavior of derivative
of f in vicinity of 0 (in particular, it also works for more general
choices of rate functions).



More on ZN

ZN has generator

AZN
ϕ(z) = −αzϕ′(z) + Nz [ϕ(mN(z))− ϕ(z)],

where
mN(z) = z +

kh

N
(1− z

f∗ − kh
N

)+ − f∗/N.

− Indeed, all neurons with potential value ≤ f ∗

k −
h
N will have an

increase of their rate – due to the spike of another neuron – given
by kh/N.
− Total number of such neurons is lower-bounded by

N − f̄ (XN)

f ( f
∗

k −
h
N )

= N(1−
1
N f̄ (XN)

f ∗ − kh
N

).

− Associated limit system is

ż = −αz + G (z)z , G (z) = (kh(1− z/f∗)− f∗)+.
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Still more on ZN

I Limit system ż = −αz + G (z)z has unique attracting
equilibrium z∞ > 0.
Indeed :

I G is decreasing and has a unique solution z∞ of G (z∞) = α
(supposing kh sufficiently large).

I z∞ is globally attracting for the limit dynamic on ]0,+∞[.

I ... and we have a LDP for ZN with good rate function (Feng,
Kurtz (2006)),

whence the instability of 0 for the true
process.

I The limit dynamic ż = −αz + G (z)z given above is only a
(pessimistic and very rough) lower bound on the true limit
dynamic.
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Forgetting the initial position in the limit process

I Take two copies X̄ and X̃ of the limit system, s.t.
Ef (X̄ (0)),Ef (X̃ (0)) ≥ z∞ − δ. Couple the spiking rates!

I How long does it take to reach value f∗/k (above which the
rates are equal)?

I Use that
E(f (X̄ (s))) ≥ zs ≥ z∞ − δ

such that the drift felt by each neuron at time s

−αX̄ (s) + hE(f (X̄ (s))) ≥ −αX̄ (s) + h(z∞ − δ).

I Yields an explicit bound tδ : time needed to reach f∗/k ,
without jumping, starting from 0.



Control the distance

δt = E|f (X̄ (t))− f (X̃ (t))|.

− It suffices to consider that the last jump before time t has
happened within [t − tδ, t] (if no such jump exists, then
f (X̄ (t)) = f (X̃ (t)), since both are above the saturation threshold! )

− Asynchronous jumps happen at rate |f (X̄ (t))− f (X̃ (t))|.
− At synchronous jumps, both processes are reset to 0 and then
only feel the differences in the drift upper bounded by

hE(|f (X̄ (s))− f (X̃ (s))|).
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Gives rise to Gronwall with bounded memory

δt ≤ cδ

∫ t

t−tδ
δsds, t ≥ tδ,

plus contribution of initial terms on [0, tδ]. Contraction works if δ
sufficiently small.



I If the initial spiking rates are not above z∞ − δ, apply coupling
with the auxiliary process : associated limit system zt reaches
(z∞ − δ,+∞) after some finite time.

I coupling of rates (bounded and equal above threshold) seems
easier than coupling of the true potential values (unbounded
and never equal, except right after a common jump).

I To obtain Wasserstein contraction of X̄ and X̃ , main
observation is: Asynchronous jumps of X̄ and X̃
automatically imply that the non-jumping particle is below
threshold, that is, bounded by f∗/k , such that we are able to
control this contribution.



Coupling of the rates in the finite system

− Here we use the LD-bounds to compare F̄N/N with the limit
system zt such that, with exp high probability, time needed to
reach level above threshold f∗/k is still comparable to tδ.



TV coupling for the finite system

Total variation coupling of all potential values of the two systems
with N neurons succeeds within [0,N] with exp. high probability. It
works on the following event:
I All spikes are synchronous during [N/2,N] (→ Wasserstein

coupling of the rates !)

I Auxiliary process initialized at time N/2, representing lower
bound on accumulated drift, is above f∗/k within
[N/2 + tδ,N].

I Each process has jumped at least once in [N/2 + tδ,N].

I Total overall spiking rate is above z∞ − δ at time N/2.



Remark
We have proved a general statement about exponentiality of exit
times which extends the results of Brassesco, Olivieri, Vares, JSP
1998 for low-noise diffusions to our frame.



Figure: Summary of the results when f (u) = (ku) ∧ f∗ with a = α/(kh)
and b = f∗/(kh).



− Other papers on metastability for different systems of interacting
neurons: Morgan André (arXiv, 2019), Léo Planché and Morgan
André (to appear in SPA).
− Ludmila Brochini and Miguel Abadi study a simplified and time
discrete version (arXiv 2018)
− Our paper on metastability with Pierre Monmarché is on ArXiv :
https://arxiv.org/abs/2004.13353

Thanks for your attention !!!
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